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Abstract

The nonlinear viscoplastic behavior of fibrous periodic composites is analyzed by discretiz-

ing the unit cell into triangular subvolumes. A set of these subvolumes can be configured by the

analyst to construct a representation for the unit cell of a periodic composite. In each step of

the loading history the total str.ain increment at any point is governed by an integral equation

which applies to the entire composite. A Fourier series approximation allows the incremental

stresses and strains to be determined within a unit cell of the periodic lattice. The nonlinearity

arising from the viscoplastic behavior of the constituent materials comprising the composite is

treated as a fictitious body force in the governing integral equation. Specific numerical exam-

ples showing the stress distributions in the unit cell of a fibrous tungsten/copper metal matrix

composite under viscoplastic loading conditions are given. The stress distribution resulting in

the unit cell when the composite material is subjected to an overall transverse stress loading

history perpendicular to the fibers is found to be highly heterogeneous, and typical homoge-

nization techniques based on treating the stress and strain distributions within the constituent

phases as homogeneous result in large errors under inelastic loading conditions.

1 Introduction

Structural analysis of component hardware fabricated from composite materials requires the ma-

terial to be considered as homogeneous. Methods for developing homogenized constitutive models

for the composite rely on volume averaging the local stress-strain response in a small representa-

tive volume element of the composite material. Most methods approximate the local stress and



strain fields in the representative volume element as being homogeneous in each phase. If higher

accuracy is required finite element representations of the local response can be obtained, but such

finite element analyses would have to be carried out at each integration point in the global finite

element analysis of the component at each step of the loading history. Such an approach leads to

prohibitively long computation times.

In order to increase the accuracy of the local stress and strain field representations, and the

efficiency in obtaining them, methods have been developed which can be embedded in the finite

element calculations at each integration point. In previous papers 1'2 we developed a procedure for

analyzing the nonlinear deformation behavior of periodic composites by means of Fourier's series

and Green's functions. These methods are built upon work carried out in references 4-9 and 10-18,

respectively. Both of these complementary approaches involve the solution of an integral equation

for the total strain increment, in which the nonhnearity arising from viscoplasticity is treated as a

fictitious body force. The loading history imposed on the composite is divided into discrete load

steps, and the integral equation for the displacement increment in each load step is derived from

Navier's equation when subject to incremental viscoplastic body forces. In the references cited 1'2,

both approaches were shown to be equivalent to one another, and the Green's function formulation

can be derived from the Fourier series representation by means of a Poisson sum technique. In

another paper 3 the Fourier series approach was used to analyze the elastic behavior of a tungsten

fiber/copper matrix (W/Cu) composite which is being considered as a substitute hner material

to increase the strength and improve the durabihty of the combustion chambers in cryogenically-

fuelled liquid propellant rocket engines. This analysis was carried out by discretizing the unit cell

into rectangular subvolumes. In this paper we introduce a triangular discretization of the unit cell

and perform a nonlinear viscoplastic analysis of periodic (W/Cu) composites. The rectangular and

triangular subvolumes are the first two element geometries of a library of geometries, similar to a

library of finite element geometries, that a user might wish to employ when performing a composite

analysis.

In the following sections we develop numerical techniques which can be used to analyze the

local stress and strain fields within the unit ceil of a periodic composite. In an actual finite element

calculation the unit cell would be discretized into a small number of subvolumes, and the local strain

field values would be homogenized to provide the finite element code with the overall homogenized

constitutive response at each integration point in the structure. Post-processing of the finite element

results can then be carried out using a much finer discretization of the unit cell with the proposed

numerical techniques.



2 Constitutive Equations

2.-1 Hooke's Law

The form of Hooke's l_w suitable for infinitesimal strains can be written in the incremental form

Aaij (r) -" Dijkl (r) (/k_kT (1") -- Ackt (r)) , (1)

in which Ackz (r) is the strain increment representing the deviation from isothermal elastic behavior,

i.e.

Z_ck,(r) = _ (r) + _k,(_)Z_T(r), (2)

where at the point in the unit cell with position vector r, Diikz (r) is the elasticity tensor, AE[t (r)

is the inelastic strain increment, and akt (r)AT (r) is the thermal strain increment. The inelastic

strain increment cam be computed explicitly at the point r since the stress is assumed to be known as

a function of position r at the beginning of the increment. The only unknown quantity in equation

(1) is then the total strain increment, ACkmz(r).

2.2 Evaluation of Total Strain Increment

The elasticity tensor at any point r in the composite material may be written in the form

where

D,jkz (r) = Di_kt + 6Dijkz (r), (3)

_D,_,(_)= _(_)(D,%- D,_,). (4)

In this relationship fl (r) = 1 in the fiber and z9(r) = 0 in the matrix, with D_%k_ denoting the

elasticity tensor of the fiber and Di_k_ that of the matrix. We then find 1-3 that in the Fourier

series approach the total strain increment in the unit cell of a three dimensional periodic lattice is

determined by solving the integral equation,

1 +_ El

_zp----O

x fffe '('('-w) {D_,,,Ac,,(r')-6D,_,,,(r')[A_, (r') - Ac,, (r')]} dV(r'), (5)
v.

where the fourth rank tensor 9kz,_, (_) is given by

1(C.¢,M;_(¢)+C.C_M;-,'(¢)), (6)



in which the Christoffel stiffness tensor M_j (_), with inverse Mi_ "1 (_), is defined 11,12 by the relation

M,j(¢) = (7)

with _p = (p/v/_m(,,, = (p/_ being a unit vector in the direction of the Fourier wave vector 4, and

( = _ denoting the magnitude of the vector 4. In equation (5) the sum is taken over integer

values in which
2ms

2_rnl 27rn2 _3 -- (8)
(1= L1 ' (2= L2 ' L3

and L1, L2, L3 are the dimensions of the unit periodic cell in the xl, x2, x3 directions, so that the

volume of the unit cell is given by the relation, V_ = L1L2L3. The values of nl, n2, n3 are given by

np= 0, =El, +2, 4-3,..., etc., for p = 1, 2, 3 (9)

and the prime on the triple summation signs indicates that the term with nl = n2 = n3 = 0 is

excluded from the sum.

2.3 Evaluation of Viscoplastic Strain Increment

In solving the preceding integral equation for the total strain increment, AskT (r), it is first necessary

to determine the inelastic strain increment, AsPz (r), and thence the deviation strain increment,

Ack, (r), in equation (2).

For this purpose we use a simple viscoplastic constitutive relationship whose governing equations

at a temperature of T ° K are given in the form19:

q..

= ½11  11 , (I0)

I1  11= A -- ,
\ /

8(T) = , (12)

exp[-_TT{ln(T)+ for 0_<T_<Tt

1IlSll = (13)

S_j = #_j--½6ijakk. (114)

Material constants for this viscoplastic constitutive formulation _9 for copper have the values:

A = 2 x l0 T per second; C = 13 MPa; n = 4.5; Q = 2 x 10 _ Joules/tool.; R = 8.314 Joules/(mol. ° K);

T,_ = 1356 ° K; and T, = ½T,,.
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The precedingequationsrepresenta simpleNorton creeplaw whereno account is taken of the

history dependenceof the inelastic deformationbehavior. This is adequatefor the type of loading

consideredin this paper, but for morecomplicatedloading conditions it is necessaryto usesome

form of unified viscoplastic constitutive formulation19wherehistory dependenceis accountedfor

with internal state variables.

3 Numerical Solution of the Nonlinear Integral Equation

3.1 Solution Under Overall Strain Control

For two-dimensional fibrous composites the integral equation for A¢k_ (r) reduces to the form

±oc

= _k,,_,,_ (¢)//e i_'(r-r') {D_,_,Ac_ (r')-
Ac np=0 Ac

- 6D.,.., (r')[Ae T, (r') - Ac.. (r')] } dS(r'), (15)

where A¢ = L1L2 is the area of the unit cell. Nemat-Nasser and his colleagues 4-9 and the authors 1-3

have demonstrated that good accuracy can be achieved by dividing the unit ceil into a number

of subvolumes, and by approximating the strain increment Ae_z (r') in the _th subvolume integral

with its average value in the subvolume, viz.,

_-_ f/Ac_, (r') dS(r') (16)
= =

where A z is the cross-sectional area of the subvolume.

Let there be N subvolumes in the unit cell, with M subvolumes in the fiber and N- M

subvolumes in the matrix. Then the preceding integral equation, with a piecewise constant strain

approximation in the subvolume integral, can be written as

f "

-'- Dm_./. $ --where 6D_,_

respectively.

If we use Nemat-Nasser's notation and write

1 f/e,,.,dS(r)Q_(_)= _.o

(17)

D_,_, or 0, according as the subvolume/3 is in the fiber or matrix,

(is)



and denote

as the volume fraction of the ath subvolume, then the preceding equation may be written as

N ±c_

/9=1 np=0

(19)

(20)

We may now volume average equation (20) over the ath subvolume to obtain

N M

Ae_ Aso + __, .f't A_,,Ac_ _, "/9 S"/9 A¢ 'r/9-- -- J klrs rs ,

3'=1 /9=1

(21)

where

and

"/9 5D_,,,sQ"(_) Q_('_) (22)= EE'g ,m (()
np=O

±CO

./9 ./9 m . . (23)Ak,., = Ski., + _ _'gk,.,. (¢) D,,...,Q (_) Q/9(-_)

./9 -/9The mat__x tensors Akz,., and S_:i,., axe akin to Eshelby's i°'11 tensor for an ellipsoidal inclusion, but

account for the interaction of the fiber with its neighbors in the infinite lattice. It may be noted that

the last term in equation (21) is summed only over the subvolumes in the fiber, where (1 _< fl <_ M),

since 5D_,_, - 0 if the/_th subvolume resides in the matrix, so that

"/9 (24)Skz,. , = 0 for M</_<N.

Thus only M unknowns (associated with the subvolumes in the fiber) are involved in equation (21).

When this relation is assembled columnwise for each subvolume a, the solution to the 6M x 6M

system of equations can be obtained by L U decomposition. We then have to solve the system of

equations

where

M

g ]Qa/9 ACT/9 __ Abe. z
/9=1

for a = 1,2,...,M (25)

a/9 $/9¢,/9
Bkz,, = 6"/9 Ikz,', + ; _'kz,,, (26)

with Ikz,., = (61._6u + 61,_6_,.)/2 denoting the fourth rank identity tensor, 6"/9 the matrix Kronecker

delta, and
N

Abe., AE °, + _ ''_ '_'Y ^"_' (27)"-- j rXklrs _'_t-rs •

_/=1



Equation (21) can then be used with the known values of A¢[f in the fiber subvolumes, where

(1 < ]_ <: M), to compute the values of AE_ in the matrix subvolumes, where (M < a < N).

An explicit solution for the total strain increment can be found from equation (25) if the total

strain increment is small. Under these circumstances the inelastic strain increment can be computed

explicitly from equation (10) in the Euler forward difference form,

A_P = 1 • P S#

In this form the inelastic strain increment is independent of the total strain increment and the right

hand side vector Abk_ in equation (25) can be evaluated from equations (2), (27) and (28). However,

if an implicit scheme such as backward Euler integration (or a forward difference subincrementation

method) is used to evaluate the inelastic strain increment, then Ae_. will depend on Ae_z and

equation (25) must be used iteratively to solve for As_, i.e.

_Z _ a = 1,2,...,M
_+1 _ 3' = 1,2,. ,N

where A is the iteration number.

Once the values of Ae_ have been determined, further resolution can be obtained, if required,

from equation (20). By substituting different r values in this equation we may evaluate Ask w (r)

at any point within a subvolume. However, the Fourier series solution in (20) will exhibit Gibbs'

phenomenon, in which the solution oscillates spatially with r near the fiber/matrix interface. These

oscillations have a period 2° of L.r/N. r for 7 = 1, 2 where L_ is the length of the unit cell and N. r is

the number of terms in the Fourier summation corresponding to the 7th direction. It is therefore

appropriate to average equation (20) over a small rectangular area about the point r. This results

in the term e il_r being replaced with the Laue interference integral, Q_((), for a small rectangular

subvolume 3 of dimensions L1/N1 x L2/N2.

3.2 Solution Under Overall Stress Control

In the preceding section the equations governing the total strain increment distribution in the unit

cell were derived under the assumption that the composite was subjected to a uniform overall

strain increment given by Ae°_. When a uniform overall stress increment, A_ri°j, is applied to the

composite, it is necessary to obtain Asi° i as a function of Ag °.

The overall stress and strain increments are equated to the volume averages of Acrij (r) and

Ae/_ (r) over the unit periodic cell. Hence, for fibrous composites, equation (1) can be volume



averaged over the unit cell to give

Aai°i = Z ff D,i_i (r) (r)- (r)) dS(r). (30)
A¢

When equation (3) is substituted into the preceding equation and we replace A_Tz (r) and Ackz (r)

with their discretized subvolume counterparts, we obtain

AO'Tj -- _ra_ijmgTk 4- 2_mAETj 4- ARij "Jr ATij, (31)

in which
M

A.Ri i __ _ f,8 [(ji,8 _/_m) _ijAEkTkfl 4- 9_(._._ #m) AE_ ]

/_=1

(32)

and

In the preceding equations isotropic relations have been assumed for D_k z and 6D_k z in the form

D_k , = ji_6#Skt + S (5_k6fl + _iz61_) (34)

and

(35)

where the superscript ,5' f or m, according as the _th subvolume is in the fiber or matrix, respec-

tively.

Equation (31) can be inverted to give

ACj= A°°;- A_j - :,m_j ,V"- 6,_ (:,o-p<,<- AR,<,_-:,T,_). (36)
2# m 2# m (3/_ m 4- 2# m)

This may now be substituted into the integral equation (21), and when all the terms containing

A¢_ff are taken over to the left hand side, the system of equations takes the form

M

C g--_afl AcT_ a,,.,,klrs_.aCrs = Aakl for c_ = 1,2,...,M (37)

where

Cklr$

f_

-" (_°lOIklrs 4- ftgq.,_.._._ 4- _m { (/_,8 -- jim)_kl_rs 4- 2 (#_fl -- _m) [-klrs) --

-- :/9 Jim {3 (/_,8 _ /_m) 4-2 (.fl -- .m)) 6qk/6qrs
2p,m (3Am + 2,Um)

(38)



and
)_m N

Aa_, = Act °' - ATk, _ 5kt ( Ao'° - AT.) + _ f "yAkt,,Ac,. _._ 7 (39)
2_= 2_=(3A=+ 2_=) 7=1

When equation (37) is solved for AeT_ for all the subvolumes in the fiber, ARii may be evaluated

from (32) and substituted into (36) to obtain the overall strain increment, Ae°j. Equation (21) is

then available to determine A_kT_ in every subvolume in the unit cell.

3.3 Matrix Assembly of Discretized Integral Equation

aZ
The solution of the integral equation in (25) requires the evaluation of the matrix tensors Ski,. _ and

_f af
Ak_, from equations (22) and (23). For isotropic constituents the matrix tensor Sk_,._ involves the

evaluation of gkz,_ (¢) (_D_n_,, which may be written from (6) and (7) in the form

$

+\ 57;, /

- 2\ _-_;/ Am+ 2_m ¢;¢"¢" (40)

where Aft,#f and )m, #m are the Lain6 constants for the flth subvolume and the matrix, and

_,= for i= 1,2. (41)
_/(2_,/q) _+ (2_/L_) _

af
with _1 = 2_rnl/L1, _. = 27rn2/L2. The assembly of the matrix tensor Aal,, requires the evaluation

of 9kl,_ (_) D_,,, and this is obtained by replacing A_ - Am and #f - #= in equation (40) with Am

and #m, respectively.

In the preceding derivation the isotropic form of equation (7),

_ij(()-'- ]-Lm_ij + (/_m .._ ].l,m) _.i(j, (42)

with inverse

M_7_(¢) = __Z_ Am+ _m
_m /,.£m(Am + 2p,m) ¢i(j, (43)

obtained by substituting (34) into (7), is used. Substitution of (43) into (6) together with the use

of (35) then yields the relationship given in (40).

_f af
The remaining factor required for assembling the matrix tensors Sat,, and Aal,, is the Laue

interference product, Q"(_) Qf(-f), with Q_(f) defined by equation (18) in which A, denotes the

area of the ath triangular subvolume.
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Let the vertices of the ath triangular subvolumehave coordinates(x_, y_), (x_, y_), (x_, y_).

We map the Cartesian coordinate system (x, y) into a new system (r, s), in which the vertices of

the mapped triangle are at the points (0, 0), (1, 0), (0, 1). This mapping is accomplished with the

relationships

z = z? + (z_ - x?)r + (x_ - z?)s

y= yl_+ (y_ - yT)r + (y_ - y?)s.

and

The area transforms according to the usual Jacobian relation dx dy = J (r, s) dr ds, in which

Ox Oy

0 (z, y) Or Or [ z_ - z_ y_ - y_
= 0 (r, s--------_- Oz Oy = [ z_ - z_; y_ - y_

Os Os

= (x_ - x "_¢" _ - - =

(44)

(45)

(46)

and where the last equality is obtained by means of the identity,

dxdy = J(r,s) drds- - A_. (47)
=o =o 2 0 (r, s)

Ao

The Lane interference integral can now be written as

Q°(¢) _- _1 If d(¢_+¢2_) dx dy
A_ Ao

A_ =o =o 0(r,s)

= 2[ )1 [, _ z_+ z _ z _ r+ z _ z_' s+_2y_+ y_ y° r+ y_ y{_ s

ds=O Jr=O
(48)

After the integration is performed, the relations for Q"(_) and Q_(-_) can be separated into their

real and imaginary components, yielding

Q'_(_) = Q_(_, _) + iQ;(_, _) (49)

and

Q_(-_) = Q_(6, _)- _Q_(6,6). (50)

In evaluating the Laue product Q"(_)Q_(-_), we need retain only the real part, since the imaginary

part vanishes on summing over n_, ne in the Fourier expansion. Accordingly, we may write

Q'_(_)QZ(-_) = Q_((_,(_)Q_((I,6) + Q_((_,(_)Q_((_,_). (51)

lO



On integration, equation (48) yields the relations,

cos(_z_'+ _2yl_)

cos(_1z_ + _:y_)
(52)

and

Q_(_, _2) sin (_lz_ + f:y_)

sin (_ x_ + _2Y_)

in a a_s_(_z______+_____)
- + - -

+ -

)z_) + _(_ - _)) "
(53)

The relations for Q_(f_, _=) and Q2_(fl, f:) are the same as the preceding relations with f? substituted

for (_.

In the case of rectangular subvolumes we have shown 3 that the Laue interference integral con-

talns products of the function sin x/x and it is necessary to attend to the limiting case where the

denominator x _ 0 and sin x/x _ 1 as x _ O. For triangular subvolumes the denominators in

the Laue interference integrals in (52) and (53) vanish under nine separate circumstances, and the

limiting form of the integrals, Q_(f_, f=) and Q_(_, _), are given in the Appendix. The confluent

case where _ and f_ are both zero is of no concern, since this case is excluded from the Fourier

summation.

In the limiting forms given in the Appendix, it is assumed that the denominators are exactly zero.

When, for example, the denominators are nonzero but small, it is necessary to expand equations

(52) and (53) into a Taylor series in ascending powers of the small quantities for the nine cases.

This can easily be achieved with the aid of a symbolic algebra software package.

4 Numerical Examples

Bahei-E1-Din, Dvorak and their colleagues _':: have given cogent arguments which show that it is

inappropriate to assume that the stress and strain increments in the unit cell are spatially uniform in

11



eachphaseof the composite. They found that when the true (within discretization error) stress and

strain increments in the unit cell were calculated throughout the loading history and the results were

volume averaged to produce the overall macroscopic response, the results were significantly different

from those (e.g. self-consistent and Mori-Tanaka schemes) in which the overall macroscopic response

was found by assuming spatially constant fields in each phase. This was found to be especially true

in composites loaded into the plastic region where the constitutive material properties vary at each

point in the unit cell in accordance with the spatially varying field histories. In the preceding studies

the true field histories in the unit cell were obtained with the use of a periodic hexagonal array

model 23 in which periodic boundary conditions were applied to a finite element discretization of the

unit cell.

Aboudi and his colleagues 24-26 have also examined the field histories within the unit cell of

a periodic composite by discretizing the unit cell into rectangular subvolumes and by enforcing

periodicity through continuity of displacements and surface tractions at the unit cell boundary.

Both of the preceding methods employ a field theory approach in which the deformation behavior

within a subvolume depends only on the displacements and tractions at its surface. Here, we study

the field histories by discretizing the unit cell into triangular subvolumes, and periodicity is enforced

naturally by expanding the field histories into Fourier series. Since an integral equation scheme is

adopted, the method is an "action at a distance" approach in which the deformation behavior within

a subvolume depends on the field histories in all the other subvolumes comprising the composite

material. The Fourier series method essentially restricts the interaction between the subvolumes

to those within the unit cell, whilst the Green's function approach 1-3,28 requires the interaction to

be evaluated between all subvolumes in the composite, though the interaction is strong only for a

subvolume which interacts with the subvolumes in its own and neighboring unit cells in the periodic

lattice.

The size of the matrix which must be solved by L U decomposition for a fiber with M subvolumes

is 6M × 6M. If the fiber has a square planform with n subvolumes along each side, then the size of

the matrix increases with the number of subvolumes along a side according to 36n 4. For a three-

dimensional cuboidal inclusion the size of the matrix increases as 36n 6, so that a three-dimensional

problem has a matrix size n 2 times as big as that for a corresponding two-dimensional problem.

In order to demonstrate that the triangular subvolume approach gives reliable results, we first

calculate the result of elastically loading a fibrous metal matrix composite. Figure 1 shows the

transverse stresses, an, in each subvolume within the unit periodic cell, when a W/Cu fibrous

composite is loaded in the transverse direction with an overall uniform stress of or°1 = 1000 kPa.

12



The tungsten fiber is assumedto be of squareplanform and occupiesa volume fraction of f =

9/49 = 0.184 in the unit cell of the composite, with Ew = 395 GPa, Vw = 0.28, Ec_ = 127

GPa and uc_ = 0.34. Fig. l(a) presents a numerical tabulation of the constant-valued stresses

for each of the 49 square subvolumes, using the Laue interference product, Q=(_)Q_(-_), for

rectangular subvolumes presented in a previous paper 3. The corresponding results when the unit

cell is discretized with triangular subvolumes is presented in Fig. l(b), where it may be seen that

the cell is discretized with the hypotenuse of each triangle biased in the northeast direction. This

causes shght asymmetries in the resultant elastic stress distribution within the unit cell. However,

when the results from the two triangular subvolumes in Fig. l(b)--into which each rectangular

subvolume in Fig. l(a) is broken--are averaged, the results in the two figures agree very closely.

These results were obtained by summing the Fourier series to np= :t:200 for p = 1, 2 in equations

(22) and (23). The results do not differ significantly from those obtained by summing the series to

np = +50.

We now consider the W/Cu composite as an assemblage of unit cells in which the tungsten fiber

is assumed to be elastic whilst the copper matrix is assumed to be a ductile viscoplastic material

whose inelastic response is governed by equations (10)-(14). The triangular discretization of the

unit cell is shown in Fig. l(b). Another discretization, in which the hypotenuse of each triangle

is biased in the northwest direction, was also used and the subvolume stresses were averaged to

eliminate asymmetries due to meshing.

The composite is loaded in the transverse direction under overall stress control at a stress rate of

_° 1 = 10 MPa per second to a maximum overall stress of cr°l = 100 MPa at a temperature of 814 ° K

or 0.6T,_. It is then allowed to creep at this overall stress for 3600 seconds, and is then unloaded to

an overall stress of cr°l = 0 MPa at an overall stress rate of _r°1 = -10 MPa per second. All other

components of _o other than &° 1 are taken to be zero.

Figure 2(a) shows the transverse stresses, an, within the unit ceil at the end of the initial 10

second loading when the overall stress is a°l = 100 MPa. Stresses are rounded to the nearest

integer. The numerical tabulation in Fig. 2(a) is presented as a topolo_cal map in Fig. 2(b), where

the height represents th e magnitude of the transverse stress concentration factors. The transverse

stress distribution forms a ridged valley where the stress gradient parallel to the loading direction is

relatively small, and where the stress is higher in the ridges near the north and south fiber/matrix

interfaces and is smaller in the valley which runs parallel to the loading direction in the center of

the fiber. The formation of a ridged valley is due to the assumed square shape of the tungsten fiber,

and to a lesser extent, to the interaction between the neighboring fibers in the periodic lattice. A

13



similar ridged valley is observedwhen a cuboidal fiber embeddedin an infinite matrix experiences

a uniform eigenstrainn.

" Figure 3(a) showsa tabulation of the local hydrostatic stressfield, (an + a22 + a33)/3, for the

same transverse loading condition. High hydrostatic stresses occur at the fiber/matrix interface

perpendicular to the direction of the loading axis, and Fig. 3(b) shows the results as a topological

map.

The transverse stresses within the unit cell after one hour of creep are shown in Figs 4(a) and

4(b). High stress gradients are present at the fiber/matrix interface and creep has the effect of

increasing the heterogeneity within the unit cell in both the fiber and the matrix phases. On

examining the hydrostatic stresses in Figs 5(a) and 5(b), we observe that some parts of the fiber

are in hydrostatic tension whilst others are in hydrostatic compression. The matrix is in a state of

hydrostatic tension with very large values observed at the fiber/matrix interface perpendicular to

the loading axis.

After the composite is unloaded to a zero overall stress state, we see from Figs 6(a) and 6(b) that a

high degree of residual transverse stress heterogeneity exists within the unit cell with relatively large

tensile stresses in the ridges and compressive stresses in the central ridged valley of the fiber. The

hydrostatic stresses in Figs 7(a) and 7(b) show a similar heterogeneous trend, with large compressive

hydrostatic stresses in the fiber's central valley and smaller compressive hydrostatic stresses in the

ridges. In the copper matrix, the tensile hydrostatic stress adjacent to the fiber/matrix interface

perpendicular to the loading axis is about as large as that which would obtain by tranversely loading

a uniform matrix material to 100 MPa.

As Dvorak has aptly remarked 22, these results serve as a salutory reminder that large errors

can be. obtained in homogenization techniques which employ the assumption that stress and strain

distributions are homogeneous in each constituent phase of the composite under inelastic loading

conditions.

5 Conclusions

This paper presents one of three known methods for analyzing the heterogeneous deformation

behavior in the unit cell of an infinite periodic lattice when subjected to a uniform apphed stress

or strain loading increment. An integral equation approach is used to determine the total strain

increment at any point in the unit cell. The integral equation is solved by a Fourier series expansion

of the field variables and their spatial variations within the unit cell are approximated by a piecewise

14



constantdistribution. Other approacheswhich havebeenconsideredin the literature areAboudi's

methodof cells24-26,the finite elementmethodwith periodic boundaryconditions21-z3,andboundary

element methods2r. The inelastic stress distribution in the unit cell of a W/Cu metal matrix

compositeis evaluatedwhensubjectedto anoveralltransverseloadinghistory imposedat aconstant

overall stress rate. The stress distribution in the unit cell is found to be very heterogeneous with

the heterogeneity increasing with continued inelastic deformation in both the fully loaded and the

unloaded condition.
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7 Appendix

Case 1: y_ = y_ and _1 - 0

and

a 2Q1(_1,_)=

° _2)=Q2(_1,

2(cos(_syl_)- cos(_sy_)+ _5(yl_- y_)sin(_sy_))
_(y_ _ y_)5

2 (sin (_2Y_) - sin (_2Y_) - _2 (Y_ - Y_) cos (_sy_))

(54)

(55)

Case 2: y_ = y_ and _1 = 0

and

Q_(_I,_:) =

Q_(_, _2)=

2(cos (_2Y_) - cos (_sY_) - _5 (Y_ - Y_')sin (_sY_))

_(y_ _ y_)5

2(sin(_sy_)- sin(_sy_)+ _5(y_- y_)cos(_sy_))

(56)

(57)

Case 3: y_ = y7 and _1 = 0

and

Q?(¢_,¢_)=

Q_(_, _:) =

2(cos (_sy_) - cos (_sy_) + _5 (Y_ - y_)sin (_sY_))

_(_I' - _)_

a S a

_::(_i_- _)_

(58)

(59)

Case 4: x_ = x_ and _5 = 0

and

QI'(_,_:) =

Q_(_,_5) =

2(cos(__) - ¢o_(_1_) +_ (_?- _) _n(__))

2 (sin (_ x_) - sin (_ x_) - {_ (x_ - x_) cos (_ x_))

_(z_ - z_)_

(60)

(6_)

Case 5: x_ - x_ and _2 = 0

Q_(_,_5) =
2 (cos (_ x_) - cos (_ x_) - _ (x_ - x_) sin ({_ x_'))

_(_ _ z_)5
(62)
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and

Q_(_,_) -
2(s_n(¢_x_)- s_ (¢_x_)+¢_(x_- x_)_o_(¢_x_))

_(x_ - _)_
(63)
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Case6: x_ = x I' and _2 = 0

and

QI'(_I,_2)=

Q_(_I, _2) =

2 (cos (_1x_) - cos (_I x_) + _i (x_ - x_) sin (_i xT) )

2(s_n(_::_)- _. (¢1_) - _ (_ - x_)¢o_(_1_?))

(64)

(65)

Case7:_1(zl' - x_)+ _2(yl_- y_) = o

I Xa a Xa a¢_(_(_,_- _,_)- ::_(y_- _,_)- :_ (y_- _,_)):

(xi_- x_)si. ( _:(:_i'_ - ::_i _))
+

+

(66)

and

Q_(_,_) -- 2

a a Xa a

(x__x_)2sin(_2(xlY2- 2Yl)_

_(x? (_ - _) - x_(_;- _) - x_(_ - _))2 +

+

)2Z_ sin

/ )
_i(x_(_ - _) - ::_(y_- _) - x_(_ - _))2.

[¢" [ _a" "i_' X_"_ _ ) 1

[_2_, lY2 -- 2Yl1

_2(_ (_._- _) - ::I (_ - v_)- _ (_ - _))
(67)

Case8: _ (x_- z_) + _:(y_ - y_) = o

2O



Q?(5,_) = 2
(_i' - _): cos\ (_:__ _) )

(::_ - x_):cos( {:(::_(y_- y_)--:L_(_:_- ::_)).)(::_- :_)
+

+

-aa Xaa

_(x_ (y_- y_)- z_ (y7- y_)- x_ (y_- _))
(68)

and

q_(_l,_:) = 2

X a a Xa a_9(_ (_ - _,9)- _ (_¢- _9)- _:_(_ - _)): +

+

(x_ - x_) _ sin (x_ - x_)

(_.(:_ - _)'_(x_- _:_) cos ,-G_- ,_t, ¢2 - x_) )
4:(_ (_,_- _,_)- _ (_,7- _,_)- _ (_7- y_,))

(69)

Case 9: _ (x? - x_) + {_ (y_ - y_) = 0

Xa _ a a

(x_- x_)_cos (x_- x_) )

o(;_,- _)- ;_ (z_- x_,)))
2

(_r- x_)_oo_ (x-_:_7$

_ (:_ (y_- _,_)- x_(_ - _) - x_,(;_ - _)):
+
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and

÷

aa Xaa(_-_)_n(_(_Y_- _Y_)_

_(_ (y_- yy)- _ (y_- y_)- _ (y_- y_))

-.t-

÷

(70)

(7_)

22



825 819 835 838 835 819 825

937 877 741 689 741 i877 937

1132 1192 1339 1394 1339 1192:1132
o.0 ¢r101=
11 12101216 1171 1157 1171 1216 1210 IOOMPa

11321192 13391394 i339 1192 1132

937 877 741 689 741 877 937

1825 819 835 838 835 819 825

(a) Unit cell of 49 squares subvolumes
with 9 squaresubvolumes in the center
embedded in 40 square subvolumes.

1_1_318 _1_376 141_2_ 1175_- -_1161 /'1224 /1193

/11rz f_2o2 1000 kPa

/f1108 _1175 _14_ _1,430 frl_7 /115;

i934 723 630 676 B91 965

_SlS isle / e41

(b) Unit cell of 98 trianglar subvolumes with 18 tri-
angular subvolumes in the center embedded in 80
square subvc4umes.

Figure 1 ._Transverse stress concentration, (Xll, for an applied
stress oi o-01 = 1000 kPa at an overall stressed rate of 001

1000 MPa per second. Each unit cell is embedded in a doubly-
periodic array of identical cells. The subvolumes in the center
of the unit cell represent a tungsten fiber of square pianform
embedded in subvolumes representing a copper matrix.
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(a) Transverse stress concentration.
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(b) Topologioal plot.

Rgure 2.--Transverse stress concentration, _r11, for an applied
stress of o_),,= 1 00 MPa at an overall loading rate of _° 1=

10 MPa per second, and topological piot of the numerical
stresses.
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(a) Hydrostatic stress concentration.
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(b) Topological plot.

Figure 3.--Hydrostatic stress concentration, (_11 + ¢r22 + ¢r33)/3'
r 0=fo an applied stress of _1 100 MPa per second applied at an

overall loading rate of _10'= 10 MPa per second, and topological
plot of the numerical stresses.
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Figure 4._Transverse stress concentration, o11, for an applied

stressof o;°,,=100 MPa atan overallloading rate of &01=
1 0 MPa per second after 3600 seconds of creep at 100 MPa,

I I

and topological plot of the numerical stresses.
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F_gum 5.---Hydrostatic stress concentration, O.ll + o'22 + o'33)/'3,
for an applied stress of crO, = 100 MPa per second applied at

an overall loading rate of '_0=" 10 MPa per second, after 3600
seconds of creep at 1 00 MPa and topological plot of the
numerical stresses.
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(a) Transverse stress concentration.
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Rgum 6.--Transverse stress concentration after unloading to
a zero overall stress rate of _0 = -10 MPa from the state

t11
depicted in Fig 4, and topological plot of the numerical
stresses.
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(a) Hydrostatic stress concentration.

(b) Topolog_.;d plot.

Rgum 7.--Hydrostatic stress concentration after unloading

to a zero overall stress at an overall stress rate of o.° 1 =

-10 MPa from the state depicted in Rg. 5, and topological
plot of the numeric stresses.
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